Using the singular value decomposition to extract 2D correlation functions from scattering patterns

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Canonical Correlation Clarified by Singular Value Decomposition

You want to find a linear combination of the x coordinates that correlates well over the data with an (in general, different) linear combination of the y coordinates. In fact, you want to find the best such matched pair of linear combinations on the x and y sides, that is, the one yielding the largest coefficient of correlation. But why stop there? Once you have the best pair, you can ask for t...

متن کامل

The Singular Value Decomposition

Carlo Tomasi Any m n matrix of rank r transforms the unit sphere in Rn into an r-dimensional hyperellipsoid in Rm. For instance, the rank-2 matrix A = 1 p2 264 p3 p3 3 3 1 1 375 (1) transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 1 shows the map y = Ax : Two diametrically opposite points on the unit circle are mapped into the two endpoints of ...

متن کامل

2-Dimensional Singular Value Decomposition for 2D Maps and Images

For a set of 1D vectors, standard singular value decomposition (SVD) is frequently applied. For a set of 2D objects such as images or weather maps, we form 2DSVD, which computes principal eigenvectors of rowrow and column-column covariance matrices, exactly as in the standard SVD. We study optimality properties of 2DSVD as low-rank approximation and show that it provides a framework unifying tw...

متن کامل

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Crystallographica Section A Foundations and Advances

سال: 2019

ISSN: 2053-2733

DOI: 10.1107/s205327331900891x